
34 IT Pro July ❘ August 2004

Wearing Two Hats:
Analyst-Managers
for Small Software
Projects

Steve Gilbert

A s software development continues to
evolve in the post dot-com era, compa-
nies have changed their project
methodology and are asking IT

employees to evolve with them. To this end, the
pure business analyst’s role has become diluted.It
used to be the business analyst who talked to users,
ironing out the details of what they wanted and
balancing that wish list against what an IT system
could economically or practically deliver. It was
also the business analyst who ensured that users
developed business processes to support the soft-
ware. The actual task of writing the software (or
installing and configuring packaged software) fell
to a project manager and his team of software
developers.

But those were the good old days.Today, com-
panies commonly ask IT managers to assume the
business analyst role in addition to their duties

as project manager. This is
especially true in small proj-
ects, those taking between
100 and 500 person-hours to
complete.

Although the business
analyst and project manager
roles might seem quite com-
patible, significant conflict
often occurs when a com-
pany assigns both roles to a

single individual. The business analyst has tradi-
tionally served as the voice of reason during proj-
ect turmoil, often stopping work to redocument
or further define a particular requirement.
Conversely, when faced with the same turmoil,
the project manager should remain focused on
the goal of delivering the project. Ideally, he must
sometimes make decisions that are outside of the
scope of the client’s documented requests. In this
article, I will use client to describe the business
entity (either internal or external) that has
requested the system or enhancement,and is ulti-
mately responsible for funding the project. Each
position thus has an inherently different focus;
this difference creates unique challenges when a
company asks one person to take on both roles.

STEPS FOR SMALL
SOFTWARE PROJECTS

So how, as an analyst-manager, will you suc-
cessfully wear two hats? Hundreds of books
already cover software project management, but
most concentrate on large projects that can take
from six months to many years to complete. The
concepts and philosophies in these books have a
place in managing small projects, so I begin with
a framework that arises from those sources.

Classical software development depends on the
six steps outlined in Figure 1: discovery; require-
ments documentation;design;cost estimation and

By following a basic framework,
IT managers can successfully
navigate the thin line between
business analyst and project
manager.

Formal Theories About
Software Project

Management

Pertinent Books

Inside

July ❘ August 2004 IT Pro 35

project planning; development; testing and delivery. For
small projects, companies have modified these six steps,
adapting them to the tight time lines and low overhead of
small initiatives. These modifications are important in
today’s resource-pressed environment.

Discovery
Discovery is key to the success of any software project.

Many projects in discovery are, by definition, in their
infancy—just beginning and only hazily defined. At this
point, it’s easy to fall prey to wish list syndrome, in which
users list all their desired outcomes, far beyond a project’s
needed focus and scope. Most initial discovery meetings
include many users from throughout a company; they have
their own agendas and functionality wish lists, which typ-
ically don’t agree. So in this early phase, you should iden-
tify a champion: one reliable big-picture user, manager, or
executive who can speak for the client. Users will then
focus on that person as their primary contact throughout
the project. This person should have enough clout in the
client’s infrastructure to have access to the resources nec-
essary for project approval, change control, testing, and
ultimately, implementation.

Because many smaller projects simply enhance or mod-
ify an existing system (or product), you must have inti-
mate knowledge of this system and its capabilities.At this
stage and with little effort, you can urge the client to use
functionality or solutions now inherent in the application,
or that the product’s vendor has already defined and
scheduled as enhancements. This knowledge will consid-
erably increase the chances of successfully implementing
the project on time and on budget. For planned small-
budget projects, discovery meetings should not last more
than eight hours, and within that time you and the client
should accomplish the following:

• Create, solidify, and agree on a statement of the project
goals; relating them back to the client’s business objec-
tives. Pay strict attention to the number of changes and
their size. Project success might ultimately depend on
keeping the scope and complexity of changes in check.

• Identify one person as a champion and primary contact
and discuss a way for the two of you to communicate.

• Discuss the requested functionality and the client’s
expectations for delivery and cost.

• Sketch the major components that require modification.
• Identify major integration points and data elements. It’s

easy to overlook this particular component.Traps, such
as the import of historical data and integration points
with legacy systems, often cripple development projects
at a stage too late in the game to fix.

• Discuss the change management process (for altering
the project’s scope), should a project need new specifi-
cations.

• Set the expectation for the project’s next steps.

Once these tasks are complete, you’re ready to move on
to the requirements documentation and design phases.

Requirements documentation
The requirements writing process is the single most

important part of any software development project.
Writing the requirements document will take at least three
times longer than the discovery process. Formats for the
requirements document can be as simple as a one-page,
bulleted list of the major components or as elaborate as
100 pages of intense documentation containing heavily
formatted text, color, and drawings. In either case, the doc-
ument’s contents should contain, in as much detail as pos-
sible, each and every requirement that the client has
requested.You should write these requirements in simple
language, avoiding technical terms that require additional
clarification.Tie requirements to the appropriate business
goal. Focus on the “what” and not the “how” at this stage.

For example, a requirement that focuses on a business
goal would be “build automated system for accepting
credit card sales via the Web.” It should not yet read,
“Install and configure Microsoft-SQL-Server-based data-
base and write back-end code to transfer transaction data
to merchant bank’s approval system.” The former is a
“what” that clearly states a business need; the latter is a
“how.” You should perform due diligence and require-
ments validation before development starts. Failing to do
so might result in costly rework later in the project.

Testing and
delivery

Development

Cost estimation and
project planning

Design

Requirements

Discovery

30 to 40
percent
of total
project

time

Figure 1. Six steps for classical
software development.

36 IT Pro July ❘ August 2004

S O F T W A R E D E V E L O P M E N T

Up to this point, this strategy might seem to follow the
classic waterfall development cycle. Eventually, however,
it will diverge from the classic method and incorporate
other selected techniques.

When complete, a well-prepared requirements docu-
ment contains the following components:

• A revision list includes revision numbers, dates, the
author’s name, and comments about the revision.

• The introduction contains an overview of the project and
how it fits a client’s business needs.

• Scope lists major components for
development or modification.

• Definitions cover acronyms and
terms in the context of the project.
For example, it is important to
expand acronyms such as XML
(Extensible Markup Language)
and FTP (File Transfer Protocol).
Because the audience for this doc-
ument is both the client and technology people, you
should also specifically define business-specific terms
such as “marketing lead” or “fulfillment.”

• Detailed requirements drill down each requirement into
its lowest-level business components, numbered for dis-
tinct organization.This allows for easy identification and
development.

• The assumptions section lists any assumptions made in
writing the document.An example would be,“This sys-
tem is designed for use with Microsoft’s Internet
Explorer Version 5.5 and higher.”

• Change control methodology is a clearly stated provi-
sion indicating that once the client and analyst-manager
approve of and freeze a document, changes to any
requirement must follow the predefined change control
methodology.

With a document containing all these parts, you have
identified client needs in a way such that the development
team can understand them well enough to design and build
the system.Many analyst-managers mistakenly write loose
or incomplete requirements. As a result, development
takes longer, and developers spend time further defining
requirements instead of actually writing code.

Once the draft requirements document is complete, ask
the development team (which could be one or more devel-
opers) to review the document while keeping the overall
time line and estimate in mind.This discussion should take
place before the document goes to the client for review.A
good developer can quickly identify vague sections in
requirements or outline difficult portions that the client
might omit or assign to a future project.

For client delivery, it’s best to save the document in a dif-
ficult-to-alter format, such as PDF or HTML. As the
author, you should be responsible for changing the docu-

ment’s contents. Letting others review and alter the doc-
ument can expose the project to additional requirements
without your knowledge. A good guideline is to plan at
least two revisions for each estimated 100 hours of the
overall project. For example, if the project’s estimated
completion time is 400 person-hours, expect to change the
requirement at least eight times before the client finally
signs off. Only after you receive official, written authori-
zation that the requirements document accurately lists all
client expectations can the design phase begin.

Design
In small projects, it’s easy to over-

look the importance of the design
phase. However, once you deliver
the “frozen” requirements document
to developers, allow them an oppor-
tunity to brainstorm and record their
design.This helps to ensure that you
and the developers have accounted

for any large gaps between your thoughts on the project
and the client’s expectations. Plan for one day (eight per-
son-hours) of design time for each 100 hours of project
time and communicate expectations for the design docu-
ment before brainstorming begins. A good analyst-man-
ager attends about half of the meetings on design to
answer questions about the requirements, and then allows
developers the freedom to design a system on their own.
Finally, developers will present their conclusions to you
for consideration, review, adjustments, and approval.

Completion of the discovery, requirements, and design
phases means you’re 30 to 40 percent of the way through
the allotted hours for the project. Although this might
seem to have taken far too long, you’ll discover that after
writing a complete set of requirements and taking a few
hours to develop a design, the actual coding does not take
as long as you might expect. So, with requirements and
design complete, you can now move on to estimating the
remaining project hours and developing an overall proj-
ect plan.

At some point during design, you can request founda-
tional items for the project, such as the setup and config-
uration of a development environment or other tools.You
need not wait until the entire design is complete to begin
the early stages of development or environment configu-
ration.This deviates from the classic waterfall technique,
but is well within today’s accepted practice.

Cost estimate and project plan
At this juncture, you can truly estimate cost and time of

delivery.There is some danger at this point in the process.
Typically,you will have already discussed the time line and
project costs with developers.But developers will typically
undershoot the actual time required. On the other hand,
if the project’s expectations are too aggressive, developers

Communicate
expections for the
design document

before brainstorming
begins.

July ❘ August 2004 IT Pro 37

will argue that the team cannot deliver in the
given time frame. Either way, a project man-
ager’s skills now come into play. Somewhere
between managing the development team’s and
the client’s expectations, a project time line
should emerge that everyone finds acceptable.
If you and the developers have trouble meeting
the deadline, specific actions can put a project
back on track:

• Prioritize requirements. Revisit the entire
body of work and prioritize each individual
requirement (again).This can expose those
few requirements that the client actu-
ally sees as vital, and you can schedule
the remaining changes for future
administration or reporting releases.

• Demonstrate a prototype. As early as
possible, demonstrate a prototype to
the client’s primary contact and users.
Showing progress is the best way to
persuade them to relax a delivery
schedule. However, this technique can some-
times backfire. Showing users an interface
early on might cause them to expect that the
development is almost complete,while in real-
ity you might still have a lot of work to do.
Anticipate this challenge and closely manage
client expectations before, during, and after
the demonstration.

You should document and formally present the
estimated cost and delivery date with the proj-
ect time line soon after any prototype demon-
stration. The first reason for this formality is to
secure, for contractual purposes, an official
record of providing this information to the client.
Second,once the project is finished,you can check for esti-
mate accuracy, which will help improve future estimates.
Generating and documenting the estimate should take no
more than 8 hours for every 100 total project hours.

In many cases,providing an estimate this late in the proj-
ect cycle is unrealistic. Sales people (if you work for a con-
sultancy and serve an outside client) or your company’s
management (if you are working with an internal “client”)
typically pressure you to provide an overall project esti-
mate early on.This often causes a mid-project correction
that negatively affects the client relationship and the pro-
ject’s overall health. Experienced project managers avoid
this trap at all costs and manage expectations at every
opportunity.

Development
At this point, you’ve completed a majority of the analy-

sis, and it is time to turn the project over to developers.

This is where you change hats, transitioning from business
analyst to project manager. Formally announce this tran-
sition with all members of the development team present.
Participants at this meeting discuss the following expec-
tations:

• Coding practices. The lead developer will announce his
expectations in terms of coding practices, common vari-
able names, and the use of existing system architecture.
He will also specify a methodology for commenting the
code.

• Deliverables. Depending on the project’s size, you will
set the expectation that the development team must
show examples of progress on a daily or weekly basis.
These examples include working, reliable code, pro-
vided in an environment where it functions either with
the current system or with components developed by
other team members. During this meeting, you will out-

This article contains components of various software project
management philosophies. Noticeable parallels exist between
the method presented here and those in the agile development,
Extreme Programming (XP), and the Rational Unified Process

(RUP) models.
Arthur English, a research director at Unisys Corp.
Global Industries, examined the merits of XP (A.

English, “Extreme Programming: It’s Worth a
Look,” IT Professional, May-June 2002, pp. 48-
52). English recently said he would recommend
iterative development. “Whether you espouse
Extreme Programming,Agile Development, or
RUP, iterative development is very important,”
English says.“Iterations should be built into the
project plan. For small projects, iterations
should not go longer than a month.” English
added that he would recommend visual model-

ing using UML (Unified Modeling Language).
“In today’s world of component-based development, visual

modeling is essential to understanding what the requirements
are and how they need to be translated into design,” he said.
“Requirements traceability is essential.”

Rather than discounting any input or proposed theory, you
should incorporate the appropriate best practices from each
method into every project.Two Web sites have additional infor-
mation:The Agile Alliance is a group dedicated to helping com-
panies use agile development methods (http://www.agilealliance.
com), and a Yahoo site provides helpful information about XP
(http://groups.yahoo.com/group/extremeprogramming).

Formal Theories About
Software Project Management

38 IT Pro July ❘ August 2004

S O F T W A R E D E V E L O P M E N T

line the expectations for these code compatibility
progress reports and give examples for what is accept-
able. You will specify how frequently the team should
present them.

• Commitment. Developers are not machines. You must
lead an open discussion about vacation schedules, work
environment, and hours, while setting firm productivity
expectations.On a short project, you should have a daily
accounting for each developer’s time. Make it clear that
you will not tolerate downtime and unscheduled vaca-
tions. Better yet, have the team set that expectation for
its own members.

• Overall project focus. Explain why your company is
undertaking this effort and rein-
force an upbeat feeling about the
project.

At the end of the meeting, leave
developers to their respective project
components, and encourage them to
talk to the lead developer or to you
if they have questions or concerns
about the project requirements.

In a small project,plan for development to take between
30 and 40 percent of the hours allotted to the overall effort.
In planning for small to medium deployments, account for
additional hours for product-specific development, such
as bug discovery or the changing of base components.
These additional hours might not affect the cost estimate
provided to the client, but they will change the delivery
date and cost-benefit ratio for you and your development
team. It is your responsibility to manage unscheduled
hours closely.

To prepare for testing, you must now write test scripts.
While you continue to meet with the client and develop-
ers to manage expectations, guide the work, and maintain
project momentum, you are also preparing these scripts.

Testing and delivery
Software project testing has many different faces.The ana-

lyst-manager should have a formal, written test plan, using
trained software testers equipped with labs of different
machines using different configurations. This testing will
ensure that the system is stable and ready for the client.
Historically, small projects have not used an independent
test team.Typically,analyst-managers did most of the testing.

Unfortunately,neither business analysts nor project man-
agers have historically been trained or paid attention to test-
ing procedures.This fact,combined with recently introduced
practices using IT statements of integrity—documents that
can dictate specific roles and responsibilities for project
team members—have resulted in the need for a regimented
and independent testing presence. Here, however, I will
focus on the analyst-manager role.From a management per-
spective, software testing has several key components:

• Write a test plan. This is critical, even if the test plan
includes only a short list of tests. As you become
involved in an increasing number of projects, the num-
ber of tests will also grow. Remember to record known
bugs in previous versions of the software, and do regres-
sion testing to be certain those same bugs are not pres-
ent in the current release.

• Test every requirement at least once. Use the require-
ments document as a guide to test every client-requested
function.

• Put the software in front of users as soon as possible.
Although you’ve only lightly tested the software,as long
as the program contains the major client-requested func-

tions, expose it to users as early as
possible for a test run. Position the
demonstration as a prototype so that
the client’s expectations of stability
are not too high. Exposing any
defects early on will not extend the
project’s overall delivery schedule as
much as finding defects later in devel-
opment.

• Produce hardcopy output when testing. Having a hard-
copy record of any error will permit better communi-
cation of any problem to developers. It also enables a
comparison with future test results,as a check that devel-
opers have corrected the problem.

• Test in the client’s environment. Simply performing tests
during development or in a test lab can yield false
results. Field testing is essential to the overall test effort.
Visit users and provide access to the test site for use on
their own workstations. Show them how to use the sys-
tem and stay with them while they are testing. A few
hours spent testing with users can save weeks of devel-
opment later when you find, for example, a conflict with
the client’s environment during deployment.

• Determine the level of testing to perform. Involve users,
using their knowledge and expectations to refine the test
plan, and set expectations based on delivery and qual-
ity needs. Some have suggested that no level of testing
can completely cover a product; there will always be
obscure portions of code that go untested until placed in
the production environment. Anomalies such as these
are often acceptable to users as long as you, prior to first
release, discuss and agree with them on support com-
mitments.

The analyst-manager is responsible for determining
when a product is ready for delivery, and for determining
where to draw the line on diminishing returns between
delivering a project on time and having a bug-free one.
The management of large and small projects differs in this
area.Teams on large projects build many hours into proj-
ect time lines for regression and user testing. On small
projects, which typically have tighter time-to-market

A few hours spent
testing with users
can save weeks of
development time.

July ❘ August 2004 IT Pro 39

expectations, teams might cut testing in an effort
to shorten the time line, particularly for an inter-
nal client. Leaving small errors alone or permit-
ting cryptic administrative pages might help save
the project, along with time and resources.

Delivery is the final stage of most small soft-
ware projects.At this point, you’ve documented,
approved, and managed the design and devel-
opment. You have tested the software and now
believe it is ready for the first release.This is not
a trying time for the well-organized analyst-man-
ager, because you’ve already shown successive
prototypes to the client over the past days or
weeks. As a result, users already know what to
expect from the software.

There are four major components to the delivery of a
small software project:

• Fallback position. Give developers the option to roll
back to the previous version of the software when imple-
menting a change, should that change not react properly
in the production environment.

• Training. While training users on the software, provide
system reference materials and other resources (such as
online help and technical support).These materials must
explain what the software does and how to use it.
Training instills users with confidence in the system, and
the resulting first impression sets the tone for the entire
client relationship after implementation.

• Results confirmation. If the new system provides out-
put—from displaying a number on-screen, to generat-
ing a file or controlling equipment—plan to be there
when the system generates its first results. Once these
come in, stop the processing until you confirm that those
results meet the client’s expectations for accuracy and
quality. Large-scale production should not proceed until
after that confirmation.

• Celebration. After completing even a small project,
acknowledge everyone on the team for their efforts, and
make sure someone thanks the client for the opportu-
nity. Members of the development team often move
directly onto the project’s next phase without some
acknowledgment for the milestone of completing the
first phase. This can breed resentment or unhappiness,
and lead to attrition or a loss of productivity.You or the
lead developer must be sure to acknowledge the team’s
accomplishment,and offer the team a short break before
starting on the next project or phase.

S hould it become necessary to trim the size of the
development team, it is possible to have one person
take on the analyst-manager role. However, I do not

recommend this tactic. If the situation dictates such a dual
role, integrity and a militant pursuit of communication and

project structure are critical to success.
Integrity is necessary to prevent compromises in func-

tionality or quality when scope creep or time line slippage
occurs. Checks and balances, discussed by an analyst and
a project manager, are a luxury of large projects. However,
when one person wears both hats,a fine line exists between
what is best for the client and what is best for the project.

Structured communication is mission critical to any small
software project.The burden is exclusively on the analyst-
manager to constantly enforce the need for documenta-
tion, structure, and control. There is little room for vague
requirements, misunderstanding, or change in a small (or
any) software project.

Overall,playing the analyst-manager role in a small soft-
ware development project is a difficult and exhausting
opportunity. One person should only undertake this
endeavor in extreme circumstances where budget or time
does not permit the luxury of the checks and balances that
exists when a project manager and business analyst par-
ticipate in the project. �

Steve Gilbert a business systems analyst for the Boston
office of Harte-Hanks Inc. of San Antonio, Tex., a world-
wide, direct and targeted marketing company that provides
direct marketing services and shopper advertising opportuni-
ties to a wide range of local, regional, national, and interna-
tional consumer and business-to-business marketers. Contact
him at steve_gilbert@harte-hanks.com.

For further information on this or any other computing
topic, visit our Digital Library at http://computer.org/
publications/dlib.

Some of the ideas in this article originated in the following
books. If you’re interested in learning more about managing
software development projects, consider reading these classic
and still-valuable sources:

➤ S. McConnell, Rapid Development, Microsoft Press, 1996.
➤ F.P. Brooks, The Mythical Man Month, Essays on Software

Engineering, Addison Wesley, 1975.

Pertinent Books

